
AV-RIR: Audio-Visual Room Impulse Response Estimation
Anton Ratnarajah Sreyan Ghosh Sonal Kumar Purva Chiniya Dinesh Manocha

University of Maryland, College Park, USA

Understanding Room Impulse Response

What is an RIR? Room Impulse Response (RIR) measures how sound reflects and decays in a

space. Formally, it can be represented as the transfer function between a sound source and a

receiver that encapsulates all the direct and reflective paths that sound can travel within any

indoor or outdoor environment. We can break down reverberant speech (SR) into its speech

content (SC ) and the corresponding RIR.

SR = SC ⊛ RIR,

What is RIR Estimation? RIR estimation is the process of determining the RIR from

reverberant speech. RIR estimation proves to be important for a variety of applications,

including speech recognition, speech enhancement, speech separation, and AR/VR.

Primary Motivation

Audio-only RIR estimation techniques are capable of estimating early components and are not

effective in estimating late components because the early components of the RIR have

impulse sparse components, while the late components have a noise-like structure with

significantly lower magnitude compared to early components.

Visual-only RIR estimation demonstrates the feasibility of predicting late components from the

RGB image of the environment. However, these approaches are not effective in estimating

early components because a single RGB image does not have enough information, such as 3D

geometry, information about the material properties of objects in the environment, speaker

position, etc.

Main Contributions

We propose AV-RIR, a novel multi-modal multitask learning approach for RIR estimation.

AV-RIR employs a neural codec-based multi-modal architecture that takes as input audio,

visual cues, and a novel Geo-Mat feature. We also propose CRIP to improve late

reverberation effects using retrieval.

During training, AV-RIR solves an auxiliary speech dereverberation task for learning RIR

estimation. Through this, AV-RIR essentially learns to separate anechoic speech and RIR. This

approach effectively redefines the ultimate learning objective, which is decomposing

reverberant speech into its constituent anechoic speech and RIR components.

We perform extensive experiments to prove the effectiveness of AV-RIR. AV-RIR outperforms

prior works by significant margins both quantitatively and qualitatively. We achieve 36% -

63% on RIR estimation on the SoundSpaces dataset, and 56% - 79% people find that AV-RIR

is closer to the ground truth in the visual acoustic matching task over our baselines.

Additionally, the dereverbed speech predicted by AV-RIR improves performance across

various spoken language processing (SLP) tasks. We also perform extensive ablation

experiments to demonstrate the critical role of each module within the AV-RIR framework.

AV-RIR Architecture
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Figure 1. Illustration of AV-RIR.
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Figure 2. Illustration of CRIP.
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Figure 3. Illustration of Geo-Mat Feature Map

Quantitative Results

Method T60 DRR EDT EMSELMSE

Image2Reverb 131.7 4.94 382.1 4907 1126
FAST-RIR++ 126.4 3.62 334.2 2630 990
FiNS 87.7 3.30 235.7 924 561
S2IR-GAN 63.1 3.04 168.3 730 310

AV-RIR (Audio-Only) 88.8 2.96 122.4 176 51
AV-RIR w/o CRIP 61.7 2.07 79.8 79 42
AV-RIR w/o Geo-Mat 55.7 1.98 74.1 104 6

CRIP-only (ours) 118.9 3.14 298.4 212 6
AV-RIR (ours) 40.2 1.76 62.1 82 6

Table 1. Comparison of AV-RIR with prior visual-only and audio-only methods for RIR estimation.

Speech Recognition Speaker Verification RTE
Method WER EER (in sec)

Clean (Upper bound) 2.89 1.53 -

Reverberant 8.20 4.51 0.382
MetricGAN+ 7.48 (+9%) 4.67 (-4%) 0.187 (+51%)
DEMUCS 7.97 (+3%) 3.82 (+15%) 0.129 (+66%)
HiFi-GAN 9.31 (-14%) 4.32 (+4%) 0.196 (+49%)
WPE 8.43 (-3%) 5.90 (-31%) 0.173 (+55%)
VoiceFixer 5.66 (+31%) 3.76 (+16%) 0.121 (+68%)
SkipConvGAN 7.22 (+12%) 4.86 (-8%) 0.119 (+69%)
Kotha et al. 5.32 (+35%) 3.71 (+17%) 0.124 (+68%)

VIDA 4.44 (+46%) 3.97 (+12%) 0.155 (+59%)
AdVerb 3.54 (+57%) 3.11 (+31%) 0.101 (+74%)

AV-RIR (ours) 4.17 (+49%) 2.02 (+55%) 0.042 (+89%)

Table 2. Performance comparison of AV-RIR SLU tasks.

Qualitative Results


