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ABSTRACT

Continued self-supervised (SSL) pre-training for adapting ex-
isting SSL models to the target domain has shown to be ex-
tremely effective for low-resource Automatic Speech Recog-
nition (ASR). This paper proposes Stable Distillation, a sim-
ple and novel approach for SSL-based continued pre-training
that boosts ASR performance in the target domain where both
labeled and unlabeled data are limited. Stable Distillation
employs self-distillation as regularization for continued pre-
training, alleviating the over-fitting issue, a common problem
continued pre-training faces when the source and target do-
mains differ. Specifically, first, we perform vanilla continued
pre-training on an initial SSL pre-trained model on the target
domain ASR dataset and call it the teacher. Next, we take the
same initial pre-trained model as a student to perform contin-
ued pre-training while enforcing its hidden representations to
be close to that of the teacher (via MSE loss). This student
is then used for downstream ASR fine-tuning on the target
dataset. In practice, Stable Distillation outperforms all our
baselines by 0.8 - 7 WER when evaluated in various experi-
mental settings1.

Index Terms— speech recognition, self-supervised learn-
ing, self-distillation

1. INTRODUCTION

Self-supervised learning (SSL) for learning effective speech
representations without expensive labeled data has proven to
be extremely successful for a variety of downstream Spoken
Language Processing (SLP) tasks [1]. The general formula-
tion of the training pipeline is to first perform large-scale up-
stream pre-training of a transformer model by solving a pre-
text task using unlabeled speech data and then fine-tune them
on labeled datasets for diverse downstream tasks. The pre-
text task to be solved can vary, and researchers have contin-
uously found new state-of-the-art methods that push perfor-
mance on low-resource SLP tasks [2, 3] Despite its huge suc-
cess in low-resource ASR, prior research has shown that SSL
models suffer from various drawbacks: (1) Speech represen-
tation models learned with SSL often don’t generalize well to
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Fig. 1: SwitchBoard test-set WER evaluated at various steps of
continued SSL pre-training of a model already pre-trained with Lib-
riSpeech. While vanilla CP starts over-fitting with increasing steps,
Stable Distillation avoids it by regularization.

domain shifts between pre-training and fine-tuning data [4],
and (2) directly fine-tuning SSL models on downstream data
often leads to catastrophic forgetting if there is a significant
discrepancy between the pre-training and fine-tuning domains
[5, 6]. To overcome this, researchers have proposed contin-
ued SSL pre-training (CP) on the downstream data to be an
effective and complementary solution to bridge upstream pre-
training and downstream fine-tuning domains [7], especially
when the target domain dataset is low-resource. However,
CP of an SSL model often leads to over-fitting on the train
set [8]. Fig. 1 shows how, with increasing steps of continued
pre-training on a target ASR dataset, the test Word Error Rate
(WER) keeps increasing. Over-fitting patterns in the target
domain also lead the model to forget useful general-purpose
knowledge learned in the past, leading to sub-optimal perfor-
mance. While it is well known in the deep learning com-
munity that training on low-resource data can almost always
lead a model to overfit on the train set and poorly general-
ize, Purushwalkam et al. [8] discuss in detail why CP leads to
over-fitting and conclude that the key reason is the violation
of the IID assumption of optimization algorithms [9].
Main Contributions. In this paper, we present Stable Dis-
tillation, a simple and novel continued pre-training strategy
to improve ASR performance on the target domain. Our key
goal is to learn representations that, while adapting to the tar-
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Fig. 2: Illustration of Stable Distillation (SD). SD performs self-distillation with a teacher model while pre-training a student on the target
ASR dataset. Both the student and the teacher models start from identical SSL pre-trained models, pre-trained on a large-scale OOD dataset.
The teacher is additionally pre-trained on the target dataset before SD. For evaluation, the student model is either fine-tuned end-to-end using
CTC (B1) or used as a feature extractor for fine-tuning an Encoder-Decoder model (B2).

get domain, have not over-fitted the training dataset and are
not forgetful of knowledge acquired during the initial pre-
training. Stable Distillation, similar to other model distillation
methods, employs two individual models, a teacher fT

pre(.)

and a student fS
pre(.), both of which, in our case, are identi-

cal and pre-trained with SSL on a large-scale out-of-domain
dataset. We first train the teacher with vanilla continued pre-
training on the target downstream ASR data and solve the
same pre-text task as the original SSL model. Next, we use
the teacher to regularize continued pre-training on the student
through self-distillation. Specifically, we attempt to match
the representations of the student and the teacher by opti-
mizing the MSE loss between both representations. Intu-
itively, the additional self-distillation regularizes the distance
between the initial weight before continued pre-training and
the final weight after fine-tuning. Finally, we either fine-tune
the student for ASR or use it as a feature extractor. We con-
duct extensive experiments on several downstream datasets
where the domain differs from the actual pre-training data
domain and show that Stable Distillation can achieve abso-
lute WER improvements in the range of 0.8 - 7 WER over
our baselines that went through no or vanilla continued pre-
training. Additionally, we show an implicit benefit of Stable
Distillation where our method can be used for better adapting
a cross-lingual model for mono-lingual ASR fine-tuning.

2. RELATED WORK

SSL in Speech. The last couple of years have seen a mas-
sive rise in SSL research with models constantly outperform-
ing SOTA on benchmark datasets [10, 1]. The most com-
mon pre-text tasks include instance discrimination via con-
trastive learning [2], clustering [3], or reconstruction [11].

However, despite its success, SSL models are not robust to
domain shifts between pre-training and fine-tuning datasets
[4]. This calls for better and more effective ways to adapt
a pre-trained model to a target domain for downstream fine-
tuning. Continued pre-training on the downstream dataset has
shown to be an effective solution for target domain adapta-
tion. However, it comes at a risk of over-fitting [8]. Over-
all, through widely employed, continued pre-training of SSL
models is a relatively under-explored area of speech represen-
tation learning, and we argue that more attention is required
by the research community to solve problems related to it.
Domain Adaptation. Supervised domain adaption for ASR
is a well-studied problem in literature [12]. On the contrary,
unsupervised SSL model domain adaptation to the target task
dataset domain is a relatively understudied problem in liter-
ature. Fan et al. [13] were the first to explore this task and
proposed DRAFT, which uses adapters in pre-trained SSL
models for effective continued pre-training. Though adapters
help effectively mitigate the problem of overfitting and catas-
trophic forgetting [14], the need and complexity of adding
extra parameters to the model impede their widespread us-
age. Lodagla et al. [15] propose a pruning-assisted domain
adaptation of SSL representations. However, their framework
is complex, requires multiple pre-training and fine-tuning
stages, and achieves minimal improvement in performance.

3. METHODOLOGY

Problem Formulation. Fig. 2 illustrates our proposed Sta-
ble Distillation. Our problem statement is simple. Given an
upstream pre-trained model fpre(.), pre-trained on any unla-
beled dataset Dp = (Xpre) using SSL, we would like to em-
ploy fpre(.) to learn ASR on a downstream labeled dataset



Df= (Xtarg,Ytarg). For this, we either fine-tune the up-
stream SSL model using CTC or use it as a feature extractor
to fine-tune a conformer-based Encoder-Decoder model to fi-
nally obtain an ASR model F . As discussed earlier, though
continued pre-training of Df on fpre(.) can lead to optimal
performance due to the several advantages it offers, like do-
main adaption to the target domain, but it also suffers from
various drawbacks like over-fitting. Thus, we seek an effec-
tive solution for CP via our proposed Stable Distillation.

3.1. Stable Distillation

(1) Continue Pre-training the Teacher. The first step to-
wards performing Stable Distillation is to teach the teacher.
We initialize our teacher by making a copy of our pre-trained
model fpre(.) and denote it as fT

pre(.). f
T
pre(.) is then contin-

ually pre-trained on Dp, by solving the same pre-text task that
fpre(.) was pre-trained on, to finally obtain fT

cont(.)

(2) Self-Distillation as Regularization. As a second step,
we initialize our student by making a copy of our pre-trained
model fpre(.), and denote it as fS

pre(.). Next, parallel to per-
forming continued pre-training on the student, we perform
self-distillation between fS

pre(.) and fT
cont(.) by matching

their final layer representations of downstream dataset Df to
finally obtain fS

dist(.). Thus, for stable distillation, we jointly
optimize the MSE between student and teacher representa-
tions and the student’s own pre-text SSL task loss as:

Lsd = ∥fS
pre(Xtarg)− fT

cont(Xtarg))∥2
+ αLpretext(f

S
pre(Xtarg)) (1)

where α is a tunable hyper-parameter used to weigh the pre-
text loss Lpretext. The pre-text task is similar to the original.

(3) Final downstream fine-tuning. Finally, we take the
trained student model fS

dist(.) and fine-tune it on the target
dataset Df using either: (1) End-to-End CTC Fine-tuning:
In a more conventional setup, we fine-tune all the weights of
fS
dist(.) by adding a linear CTC head and optimizing the CTC

loss. (2) We fine-tune a conformer-based encoder-decoder
model employing fS

dist(.) as an upstream feature extractor by
jointly optimizing CTC and attention-based auto-regressive
loss [16]. For the latter, all weights of fS

dist(.) are frozen.

An intuition into why Stable Distillation works. Nagarjan
et al. [17] show that the model capacity of deep networks
is restricted through implicit regularization of the l2 distance
from the initialization. Thus, the distance can affect the gen-
eralization bounds of these networks. Mobahi et al. [18] per-
form several experiments to study the regularization effect of
self-distillation. Thus, as a derivation of these findings, we
use self-distillation to improve generalization via a regular-
ization effect on the l2 distance. Fig. 3 illustrates how SD
minimizes the l2 distance between fine-tuned and CP models.

Table 1: Detailed Statistics of datasets used in our experiments.
Type refers to Conversational or Read speech.

Dataset Language Domain Type Duration
(train, dev, test)

MSR Gujarati General Conv. 40hr, 5hr, 5hr
MSR Tamil General Conv. 40hr, 5hr, 5hr
MSR Telugu General Conv. 40hr, 5hr, 5hr
Gramvani (GV) Hindi Call Cent. Conv. 100hr, 5hr, 3hr
SwitchBoard (SWBD) English Call Cent. Conv. 30hr, 5hr, N.A.
Wall Street Journal (WSJ) English Finance Read 80hr, 1.1hr, 0.4hr
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Fig. 3: Frobenius norm of the weight difference between CP (wpre)
and fine-tuned models (wfine) for CP of Wav2Vec2-Lb on SWBD.

4. EXPERIMENTAL SETUP

Datasets and SSL Pre-trained models. Details on individ-
ual datasets used for all our experiments can also be found in
Table 1. We use the splits mentioned in Table 1 for all our
experiments in Table 2. Precisely, we evaluate our approach
on the MSR low resource Indian language corpus (MSR)
[19], Gramvani ASR dataset [20], SwitchBoard dataset [21]
(SWBD) and the Wall Street Journal dataset [22]. For SWBD,
we take a low-resource split, the rationale behind which is
mentioned in Section 5.

For all our experiments in Table 2, we use either of: (1)
Wav2Vec2 [2] pre-trained on 960 hours of LibriSpeech [10]
(Wav2Vec2-Lb), (2) XLSR-300 model [23] pre-trained on a
combination of VoxPopuli, MLS, CommonVoice, BABEL,
and VoxLingua107, or (3) Vakyansh model [24] pre-trained
on speech from Hindi YouTube videos. All these models are
pre-trained on read speech from the general domain.
Baselines. Due to the lack of prior work in this space,
we compare Stable Distillation with other commonly used
pipelines that include: (1) No Continued Pre-training: For
this baseline, we use the pre-trained SSL model without any
continued pre-training on downstream dataset Df and (2)
Vanilla Continued Pre-training: For this baseline, we per-
form vanilla continued pre-training of our SSL model on
downstream dataset Df .
Hyper-parameters. For stable distillation, we first perform
continued pre-training on our teacher wav2vec-2.0 for a to-



Table 2: Comparison of Stable Distillation ASR results with our baselines on both Enc-Dec and E2E evaluation settings. All results are in
the format of dev / test. R and C indicate Read and Conversational Speech. Domain Map refers to the source pre-training → CP domain.

Pretrained Downstream Domain Map No Cont. Pretrain Vanilla Cont. Pretrain Stable Distillation
Model Dataset (Source → Target) Enc-Dec E2E Enc-Dec E2E Enc-Dec E2E

XLSR-300 GVHindi GeneralR → Call Cent.C 32.7 / 32.5 37.3 / 37.0 31.6 / 31.4 35.3 / 35.0 28.9 / 27.7 30.3 / 30.1
XLSR-300 MSRGujarati GeneralR → GeneralC 21.7 / 28.5 24.4 / 32.3 21.3 / 27.2 22.1 / 30.3 20.2 / 26.4 20.2 / 28.4
XLSR-300 MSRTamil GeneralR → GeneralC 28.1 / 27.7 33.4 / 32.1 27.8 / 26.9 32.2 / 31.2 26.7 / 25.7 29.1 / 28.4
XLSR-300 MSRTelugu GeneralR → GeneralC 28.3 / 28.8 34.1 / 32.8 28.0 / 28.3 32.6 / 32.0 27.2 / 27.1 29.4 / 28.1
Vakyansh GVHindi GeneralR → Call Cent.C 34.5 / 34.3 33.2 / 34.2 32.7 / 32.5 31.7 / 31.5 30.6 / 30.4 30.0 / 30.1

Wav2Vec2-Lb SWBDEnglish GeneralR → Call Cent.C 39.1 / N.A 22.2 / N.A. 36.2 / N.A. 20.4 / N.A. 31.4 / N.A. 14.3 / N.A.
Wav2Vec2-Lb WSJEnglish GeneralR → FinanceR 12.4 / 11.6 11.4 / 10.9 11.3 / 10.6 10.5 / 10.0 10.5 / 9.8 9.5 / 9.1

Table 3: Performance comparison in Enc-Dec setting when CP
→ final fine-tuning language/domain differs. Results show that SD
leads to better regularization. For Libri. we report clean | other.

Model Dataset Vanilla Cont. Pretrain Stable Distillation
XLSR-300 GVHindi → MSRTamil 101.4 / 101.5 47.8 / 47.8
XLSR-300 GVHindi → MSRTelugu 99.4 / 99.7 46.7 / 46.9
Wav2Vec2-Lb WSJEnglish → LibriEnglish 18.2 / 28.8 | 23.3 / 29.8 16.0 / 25.2 | 20.1 / 27.6

tal of 50 epochs and then perform Stable Distillation on the
student for 50 more epochs. For a fair comparison, for our
continued pre-training baseline, we pre-train the model for a
total of 50 epochs. We train with a learning rate of 5e−4 us-
ing Adam optimizer. Finally, for Stable distillation, we find
α = 0.01 to give us the best performance searched among
{0.01, 0.05, 0.1, 0.5, 1}. For downstream fine-tuning, we use
a conformer-based encoder-decoder model that has 12 en-
coder layers and 6 decoder layers. We train our models with
a learning rate of 1.5e−3, batch size of 64, and for a total of
100 epochs. We report the Word Error Rate (WER) averaged
over three runs with different random seeds.

5. RESULTS AND ANALYSIS

Table 2 compares the performance of Stable Distillation with
all our baselines on the splits for all datasets mentioned in Ta-
ble 1. For all experiments, we follow dataset settings resem-
bling real-world scenarios where the target domain for CP is
usually from a different domain and is low-resource compared
to the source domain that the model is already pre-trained on
(see Domain Map column in Table 2). SD, on average, out-
performs our baselines by 0.8-7.7 WER in the Enc-Dec setup
and 1-7 WER in the E2E setup. Precisely, for the Enc-Dec
setup, compared to vanilla CP, we achieved an average rel-
ative WER improvement of 7.2% and 7.1% for dev and test
sets, respectively. Compared to no CP, the improvements are
11.3% 11.1%. For the E2E setup compared to vanilla CP, we
achieved an average relative WER improvement of 13.0% and
12.9% on dev and test sets, respectively. Compared to no CP,
the improvements are 17.3% and 17.2%.
Table 3 confirms our claim that SD improves vanilla CP by
adding explicit regularization, thereby preventing overfitting
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Fig. 4: More results. Stable Distillation outperforms all baselines.

on the target domain train set. Ideally, if a model has over-
fitted to the target training dataset after CP, it should perform
worse if it is fine-tuned for ASR on the source dataset itself
or any other dataset where the domain or language differs.
While rows 1 and 2 show examples when the CP and fine-
tuning languages differ, row 3 shows that SD leads to bet-
ter performance than vanilla CP with LibriSpeech ASR when
Wav2Vec2-Lb (also pre-trained on LibriSpeech) was further
pre-trained on SWBD. Row 6 in Table 2 shows that the same
model also performs better than CP with WSJ ASR (due to
effectively exploiting past knowledge). Rows 1-6 also show
a peripheral benefit of SD, which helps in effective cross-
lingual to mono-lingual adaptation of SSL models pre-trained
on large-scale multi-lingual data [25].

6. CONCLUSION AND FUTURE WORK

In this paper, we propose Stable Distillation, a simple and
effective methodology for target domain adaptation of pre-
trained SSL models. Stable Distillation regularizes continued
pre-training of an SSL model on a target domain and pre-
vents overfitting. We empirically show that Stable Distillation
proves to be extremely effective in various settings where the
initial and target domains differ. As part of future work, we
would like to explore better distillation procedures for contin-
ued pre-training further to push ASR performance in trivial
and simple steps.
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