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Motivation: Generalizability and Cluster Contrastive

eLearning audio representation that can generalise across various speech and non-
speech tasks in low-resource settings.

oSLICER (Symmetrical Learning of Instance and Cluster level Efficient Representation)
computes contrastive loss at the instance and cluster levels to generate clustering-
favourite representations.

Proposed Augmentation Technique: K-mix
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eThe next step is to randomly select a
sample from the first r samples as noise.
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Results: Comparing SLICER performance

Models have been pre-trained on 10% of AudioSet and FSD50K and then linearly
evaluated while keeping the weights frozen on the LAPE benchmark.

Speech Tasks Non-Speech Tasks
Model SC-V1 5%1—2\;2 S(C3'5‘;2 LBS | VC IC VF NS BSD TUT | US8K
COLA 773 | 77.2 66.0 | 89.0 | 289 | 59.8 | 69.2 @ 61.3 | 85.2 52.4 | 69.1
BYOL 87.7 87.2 34.5 90.0 | 31.0 60.0 33.1 /1.2 37.8 58.4 /7.0
DelLoRes-S | 86.1 35.4 30.0 90.0 | 31.2 60.7 /6.5 66.3 386.7 58.6 /1.2
DelLoRes-M | 94.0 93.3 389.7 95.7 | 45.3 65.2 38.0 /5.0 39.6 65.7 32.7
SLICER 94.8 94.2 90.4 95.7 | 49.4 66.4 89.9 /6.3 90.0 66.8 83.2

SLICER achieves SOTA performance with an average gain of 1.2% across all the
downstream tasks in the LAPE benchmark compared to DeLoRes-M.

Proposed Architecture for SLICER

Cluster-Level Contrastive gc(-)
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Introduce symmetric cross contrastive learning framework (instance-level contrastive
learning) and cluster-level contrastive learning framework for momentum based
student-teacher network.

Cluster-level contrastive loss:
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Instance-level contrastive loss:

e SLICER is pre-trained by combining instance and cluster-level contrastive loss.

e While the instance-level contrastive loss is computed between the student and
teacher network, the cluster-level contrastive loss is computed only with the
student network.

e The teacher network parameters are updated using momentum

update (exponential average update)




