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Motivation: Unsupervised Finetuning and Model Compression

eWe introduce UnFuSeD (Unsupervised Finetuning Using Self-supervised Distillation),
which does unsupervised finetuning using SSL pre-trained models.

eUnFuSeD also achieves model compression of 40% using self-distillation by dividing
the encoder into student and teacher counterparts.

Proposed Upstream SSL pre-training: DECAR-v2

SSL Pre-training_
0/0Q
> | A T [
M) @ :
L§ T oXe .
S, '
f?D, —>| Encoder —>» ¢ —> CIUStf"ng @
Y Fore(*) '_'Q: Initialize with centroid
X g \ / — z v ; i
pre hproj )[ Pf’()'l:()typekﬂ"""‘I
hp'rot

We propose DECAR-v2 which stablize the overall training process by updating the
Prototype weights with cluster centroids.

e Assignment Phase: The primary purpose of this phase is to obtain pseudo-labels q

for every unlabelled audio sample x € Xpre

e Training Phase: We train the network using supervision from the pseudo-labels (
obtained from the assignment phase.

Results: Comparing SLICER performance

Models have been pre-trained on 10% of AudioSet and FSD50K and then linearly
evaluated while keeping the weights frozen on the LAPE benchmark.

Speech Tasks Non-Speech Tasks
Model SC-V1 Sfl'z‘;z 553'5‘;2 LBS | VC IC VF NS BSD TUT | US8K
COLA 77.3 77.2 66.0 | 89.0 | 28.9 | 59.8 69.2 61.3 85.2 52.4 69.1
BYOL 87.7 | 87.2 84.5 | 90.0  31.0  60.0 83.1 71.2 87.8 58.4 77.0
DelLoRes-S | 86.1 | 85.4 80.0 | 90.0  31.2 | 60.7 76.5 66.3 86.7 58.6 71.2
DeLoRes-M | 94.0 | 93.3 80.7 | 95.7 | 45.3 | 65.2 88.0 75.0 89.6 65.7 82.7
UnFuSeD | 94.4  94.1 90.1 | 97.0 | 50.0 66.0 89.8 76.4 90.0 66.8 83.2

UnFuSed achieves SOTA performance with an average gain of 1.2% and 40% fewer
parameters compared to DeLoRes-M.

Proposed Architecture for UnFuSeD
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Unsupervised Fine-tuning
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Unsupervised Finetuning: We finetune a randomly initialized encoder with the
pseudo-labels obtained by a pre-trained encoder using self-distillation by dividing the

encoder f.,( - ) into the student f_ (- ) and teacherf /(+) counterparts.

Loss Functions: We jointly optimize Cross-Entropy, KL-divergence and Mean-square
error across student and teacher counter part.
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Linear Evaluation: Next, we use only the student counterpart f.,(+) and update a

linear layer on the desired downstream tasks while keeping the rest of the network
frozen.




